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1. INTRODUCTION

Let a discretisation of a partial differential equation be
denoted by

Ay = b (1.1)
This is a system of linear equations.

Stationary single-step iterative methods for solving (l.l) can
be written as

yn+l = yn + B(b - Ayn) «(1.2)

where the matrix B, which often is not formed explicitly,
depends on the iterative method that is chosen.

If the discretisation is nonlinear, it is assumed that some
linearisation leads to a linear system (1.1). The iterations
(1.2) will then be inner iterations within an outer iteration
on the nonlinearity.

In practical applications the number of unknowns in (l.l)

can be quite large, and simple and straightforward iteratiwve

methods normally converge slowly. A significant recent

development in numerical mathematics is the rise of

preconditioned conjugate gradient methods (CG) and multigrid

i methods (MG). With respect to linear problems, both can be
regarded as acceleration techniques for basic iterative methods.
This provides us with a unifying point of view.
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The purpose of this paper is to briefly review CG and MG
from the viewpoint just mentioned, and to intreduce the reader
to the literature.

For completeness it should be mentioned that MG can also
be applied directly to nonlinear problems, and this may lead
to a more efficient solution method than linearisation
followed by application of a fast linear solver. See
(Hackbusch and Trottenberg, 1982) for a general introduction to
MG. Up-to-date accounts of CG are given in (Hageman and Young,
1981; Golub and van Loan, 1983).

2. BASIC ITERATIVE METHODS

"Basic iterative method" (BIM for short) is a loose
appellation for methods of type (1.2) that are simple and easy
to implement. For a review of BIMs (including some that are
not so simple) see (Young, 1971, or Varga, 1962). Examples are
the Gauss-Seidel (GS) and SOR (successive over-relaxation)
methods. The computational complexity of these methods for a
typical problem such as the two-dimensional Poisson equation

is O(Nz) and O(N3/2), respectively, with N the number of grid
points. These numbers explain both the popularity of SOR in
the sixties, and the large computer times needed for large N.
Accelerated by CG or MG, the computational complexity becomes

0(N5/4) (conjecture) or O(N), respectively, as will be
discussed later.

The most popular BIMs used with CG and MG are GS methods and
incomplete factorisation (IF) methods.

The reader is assumed to be familiar with GS methods. They
come in various orderings (lexicographic, red-black etc.) and
may be pointwise or blockwise (by lines or planes mostly). We
give a short outline of IF methods.

An incomple LU-factorization (ILU) of the matrix A consists
of a lower triangular matrix L and an upper triangular matrix
U such that

LWw=A+C (2.1)

where C represents the error matrix. With C = O (complete
factorization)L and U usually are much less sparse than A,
which leads to large storage and computer time reguirements.
By allowing C # O sparsity of L and U can be obtained. For
example, if A represents a typical two-dimensional 7-point
finite difference stencil of a second order elliptic partial
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difference operator on a rectangular grid, the sparsity
patterns of L, U, A and C could be as in Fig. 2.1.

Fig. 2.1. Sparsity patterns. — - - : C

For simple formulae for the computation of L, U and C on a
rectangular computational grid and theoretical results on the
existence of L and U see (Meijerink and van der Vorst, 1977,
1981, Wesseling, 1982A, Sonneveld et al., 1985),

Equation (2.1) leads to the following iterative method for
solving (1.1):

P o @ He - ag™ (2.2)

Using (2.1) this can be rewritten as

yn+l _ (LU)—l(b + Cyn)

(2.3)
Hence, A is not needed, and L and U can be stored at the
location of A. Usually C is not stored but computed. Hence,

no extra storage is required. Because C is very sparse

(cf. Fig. 2.1) the right hand side of (2.3) comes cheap. One
iteration with (2.3) takes 18N operations, generation of L

and U takes 21N operations, with N the number of unknowns: see
for example (Wesseling, 1982a).

Incomplete block LU~-factorization (IBLU or ILLU, incomplete
line LU-factorization) of A goes as follows. On a rectangular
grid with n vertical and n horizontal lines the matrix A has
the following structure:
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B4
L, B, 5
Ly By U
A= (2.4)
Ln Bn
| -

with Li' Bi and Ui m X & matrices; Bi is tridiagonal; L, and
i
Ui are lower and upper bidiagonal, with sparsity patterns

{(3,3-1), (3,9} and {(3,3), (3,3+D} respectively. There exists
a matrix D such that

-1
A= (L +D)D (D + U (2.5)
where
[ o ] —6 U T
1
L20 OU2
L = L3O y, U= . . ’
: - ° Un—l
N Ln OJ B o |
D, ]
Dy
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Equation (2.5) is sometimes called a line LU-factorization
because the blocks in L, D and U correspond to (in this case
horizontal) lines in the grid. Equation (2.5) can be rewritten
as

A=L+D+ U+ oty (2.6)

One finds that LD~1U is the following block-diagonal matrix:

- ]

- . 2.
LD lU = (2.7)

L LnDn-lUn—l

From (2.6) and (2.7) we deduce the following algorithm for the
computation of D:
-1

p, =B, D, =B, - L,D

1 1 ; i 5 i-lUi—l' i=2,3,...n (2.8)

The matrix Dzl is a full m x m matrix, which causes the cost

of a line LU-factorization to be O(nm3), as for standard
LU-factorization. An IBLU factorization is ocbtained if we
replace LiDT' by its tridiagonal part. Thus, algorithm

l—lUi~l
(2.8) is replaced by:

_ - _ s -1 . (2.9)
Dl = Bl' Di = Bi tridiag (LiDi—lui-l)' i=2,3,...40.

The IBLU factorization of A is now defined to be
A= (L + DD L (D+U) +R (2.10)
with R the error matrix, and D the block diagonal matrix with

blocks D,.
i
Detailed formulae for the computation of D are given by
(Concus et al., 1985; Sonneveld et al., 985; Axélsson et al.,
1983; Meijerink, 1983; Underwood, 1976).
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From (2.10) the following iterative method is obtained:

oy -
(L +D)D (D + U)Sy = b ~ ag™, y* = ® + " (2.11)

The cost of one iteration with (2.11) is 37N operations; the

cost of D and its triangular factorization is 36N operations.
Storage of 6N reals is required for the triangular factoriza-

tion of D and for D. For details see (Sonneveld ed al., 1985).

Both ILU and IBLU can be implemented efficiently on vector
computers: see (van der Vorst, 1982, 1985; Meurant, 1984;
Hemker et al., 1983). Variants of ILU are discussed by Behie
and Forsyth (1984), Gustafsson (1978) and Manteuffel (1979).

Extension of ILU to three dimensions is straichtforward, and
has been tested in combination with CG and MG by Behie and
Forsyth (1983). A three-dimensional version of IBLU has been
proposed by Meijerink (1983) and Kettler and Wesseling (1985).

3. CONJUGATE GRADIENT ACCELERATION OF BASIC ITERATIVE METHODS

For an introduction to conjugate gradients (CG) (and
Tchebychev) methods, see (Hageman and Young, 1981, or Golub and
van. Loan, 1983). Here only a brief cutline is given.

One way to look at CG is as follows. Assuming the matrix
A to be large and sparse we allow ourselves to use A only for
multiplication with vectors and nothing else. This means that
polynomials in A can be built. A rather general algorithm then
is
yn+l - yn + anpn’ pn - an(A)rO (3.1)

Here an is a scalar to be determlned 9 is a polynomial of

degree n, and ro b - Ay is the 1n1t1al residue., We find

n+l _ n+l _ (o]
r = b ~ Ay = ¢n+l(A)r (3.2)
with
¢n+l(A) =1 - A{anOn(A) to 16 B 4+ ... +a B (A)}r (3.3)
Hence
€ (3.4)
¢ €T, .
1 . .
Hn = {wn|wn(0) =1, wn is polynomial of degree < n} (3.5)
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The distinguishing property of CG is that ¢ is constructed
such that

o O 1 .
Ho = || < [l x|, v v €8 (3.6)
Depending on the choice of norm, different CG variants are
obtained.

By itself CG does not achieve an impressive rate of
convergence. It comes into its own when it is combined with
preconditioning. Let B be the preconditioning matrix. Then
a preconditioned CG method is given by:

- [o) G
Pt =0, 2 =b-a"
T
n n n-1 n n
= = ’ = Br
p Br +B8pP e pn/pn_l pnT r ’ 3.
n+l n n _ _.n . n '
y =y taop,a =p /0,0 =p AP,
rn+l - rn _ anApn

see (Hestenes, 1956). With B = I one obtains an un-
preconditioned CG method. 1In this case the norm in (3.6) has
been chosen as follows:

llz||? = eTa e (3.8)

Now we will explain why (3.7) can be regarded as an
acceleration of the BIM (1.2), under the assumption that B is

SPD, so that one may wrlte B EET. By substitution of
r =E Tr, p = Ep, y = Ey one flnds that (3.7) is CG applied to

T
the preconditioned system Ay b with b E b A E"AE,

According to (3.2), (3.6) we have

ETrn = ¢n(ETAE)ETrO (3.9)

with
s, (="am)E™0| | < ||y ("am)ET|| , vy € 1 (3.10)

From (l1.2) it follows that

Elr® = ETw (AEET)E_TETrO,wn(x) =(1-x"¢€ ﬂi (3.11)

since X (aEEN)¥e T = (2'aE)X , V k eq. (3.11) can be
rewritten as

T 3.12
ETr® = v (E AE)E 10 ( )
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Comparison of (3.9) - (3.12) shows that (3.7) will converge

at least as fast as (1.2). The computation of Br" in (3.7) is
performed by means of one iteration with (1.2), since

+
e (3.13)

The rate of convergence of CG has been studied in a number
of publications. From (3,6) one may deduce, as in (Daniel,
1967), that the required number of iterations n to reduce the
residue by a factor ¢ satisfies

5

n > > 1n < cond,(BA) (3.14)

INTR ]

with cond2 the condition number in the Euclidean norm. For

a detailed study of the rate of convergence see (van der
Sluis and van der Vorst, 1985).

An effective and popular preconditioning is provided by
incomplete Cholesky factorization, leading to the ICCG method,
proposed by Meijerink and van der Vorst (1977). Its
effectiveness is explained by taking a look at the spectrum
of BA. Gustafsson (1978) proves that with a modified form of
incomplete Cholesky factorization for the Poisson equation in
two dimensions

condz(BA) = 0(1/h) (3.15)

so that because of (3.14) the computational cost of 0(N5/4),
with N the number of gridpoints. Compared with older methods,
very impressive rates of convergence are obtained with ICCG
for a number of difficult problems by Kershaw (1978). An
implementation leading to greater efficiency is given by
Eisenstat (1981).

The restriction of CG to SPD problems is of course a
severe one, Various CG type methods have been proposed for
non-SPD systems., An example is the CGS (conjugate gradients
squared) method, proposed by Sonneveld (1984)., This method
is defined as follows, in its preconditioned form:
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O -
£ =b -1y, gt =% =o,

n IL n-1 n
u=Bfn+Bnh . u+Bn(Bng +h),

(3.16)

+ +

hn+l =u - tanAgn ’ yn 1 = yn + an(u + hn l) .
+

= - @™

with
an = pn/cn ’ BO =0, Bn = pn/pn—l '
T T
g = ;O BE" y O = ro BAgn
n n

where ro is a vector to be chosen.

For a justification of this method see (Sonneveld, 1984;
Sonneveld et al., 1985). 1It is related to the biconjugate
gradient (bi-CG) method of Fletcher (1976). With bi-CG
one has

P = ¢n(BA)rO (3.17)

With CGS one obtains at almost no extra cost

= ¢i(BA)rO (3.18)

The polynomials in (3.17) and (3.18) are the same. It follows
that if bi-CG converges, then CGS converges faster (the S in
"CGS" is inspired by the sguaring of ¢n). Furthermore, unlike

bi-CG, CGS does not use A?.

Bi-CG and CGS are but two examples of extensions of CG to
non-SPD systems. We will not review other extensions that
have been proposed, but restrict ourselves to mentioning the
publications of Concus and Golub (1976), Vinsome (1976),
Widlund (1978), Axelsson (1980), van der Vorst {198l) and Young
and Jea (1980). A somewhat related class of methods is formed
by the #fchebychev methods: see (Manteuffel, 1977, 1978;
Hageman and Young, 198l). These methods can be very efficient,
but their effectiveness depends on the choice of certain
parameters.

Unlike the SPD case, in the non-SPD case the theory is far
from complete. For CGS applied to a general system a rule of
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thumb is, that with ILU or IBLU preconditioning good
convergence may be expected if A satisfies

a,, > =L a,.,a,.,%<0,] # i (3.19)
ii " ij ij

Sonneveld (1984) and Sonneveld et al. (1985) estimate the
cost of a CGS iteration to be 60 flops (ILU preconditioning)
or 88 flops (IBLU preconditioning) per grid point.

4, MULTIGRID ACCELERATION OF BASIC ITERATIVE METHODS

The basic ideas of MG are quite general and have wide range
of application, including other fields than partial
differential equations. MG can be used not only to accelerate
iterative methods, but also, for example, to formulate novel
ways to solve nonlinear problems, including bifurcation
problems and eigenvalue problems, or to devise algorithms
that construct adaptive discretizations. The volume edited
by Hackbusch and Trottenberg (1982) presents a useful survey
of all aspects of MG. See also (Brandt, 1984).

We restrict ourselves here to the one aspect of MG
mentioned in the title of this paper. This makes it
possible to simplify MG, and to distinguish situations where
its effectiveness is guaranteed. The significance of MG
as an acceleration technique springs from the fact, that in
principle a computational complexity of O(N) can be achieved.
This has been proved rigorously under quite general
circumstances; see (Hackbusch, 1982) for a survey of MG
convergence theory. Work in this area is still going on.

If the BIM (1.2) converges, it usually has the pxoperty,
exploited by MG, that the non-smooth part of error and
residue is annihilated rapidly, whereas it takes many
iterations (more and more as the mesh size decreases) to get
rid of the smooth part. The property of smoothness will be
defined precisely shortly. The fundamental MG idea is to
approximate the smooth part of the error on coarser grids.

In the MG context the BIM (1.2) is called a smoothing process.

A two-grid method can be defined and explained as follows.

Let G be a fine grid and G C G a coarse grid., Let the sets

ot grid functions G + R and G + R be denoted by ¥ and §,
respectively. Let the coarse grid approximation of (1.1) be
given by
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Ay = b (4.1)

Furthermore, let there be given a prolongation operator P
and a restriction operator R:

P:Y>Y,R:Y>YX (4.2)

A two-grid method for the acceleration of the BIM (1.2)

can be formulated as follows. Let yJ be the current iterand,
and let yj+12 be the result of applying a coarse grid correction
to yJ:
i+ j =1 j
¥ =y + PA RO - AY) (4.3)

where we assume for the time being that the coarse grid

problem is solved exactly. For the residue ) =b - ij

we find:
oy . .
A2 (1 - aea YRy (4.4)

We now make the following choice for i, called Galerkin
approximation:

A = RAP (4,5)

A more obvious choice of A would be to discretise the

differential equation on the coarse grid E', but

(4.5) leads to a more elegant exposition of MG principles,

and has other advantages as well, to be mentioned later. It

now follows from (4.4) that

j+

- K € Ker(R) (4.6)

as noted by Hemker (1982) and McCormick (1982). In other

j+

words, r’ s 4 Kerl(R), which justifies the appellation

"Galerkin approximation" for (4.5). Following Hemker (1982)

we relate the concept of smoothness to Ker(R):

Definition 4.1 The set of R-smooth grid functions is

Kerl(R).

This definition makes sense intuitively, since in practice
R consists of taking weighted averages with positive weights
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over the fine grid, so that a grid function in Ker (R) has
many sign changes, and hence may be called non-smooth.

It remains to annihilate the non-smooth part of r, and
this is done in the second part of two-grid iteration, called
smoothing. This is done with the BIM (1.2):

j+1 5+
yJ J

=y + B(b - Ay]+%

) (4.7)
and we find:

j+1

r = (I - AB)rj+&

(4.8)

The projection operator on Ker(R) is I - R?(RRT)_lR, and we
conclude from (4.8) and (4.6) that

j+l

7 = (1 - AB) (T - % (rrT) 1Ry Y

(4.9)
This leads us to the following definition:

Definition 4.2 The R-smoothing factor of the smoothing
process (1.2) is

Py = || (x - aB) (T - RT(RR?)_lRII

The concepts of smoothness and smoothing factor can also
be related to the range of P, or be introduced by means of
Fourier analysis as proposed by Brandt (1977). For
definitions, see (Sonneveld et al., 1985). Fourier analysis
leads to less precise exposition, but to smoothing factors
that are easy to compute. See (Brandt, 1982, and Kettler,
1982) for more details.

If we postulate that

[z - apa IR | <1 (4.10)

(which holds approximately if P and R are accurate enough)
then we may conclude from (4.4) and (4.9) that

. ) ,
Hed | < | - ama - R @D R || ]7]] @1

Without coarse grid correction, the residue reduction factor
would be III - AB|[. Equation (4.11) shows how MG accelerates
the convergence of the BIM (1.2), if the BIM reduced non-
smooth residue components efficiently.
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Chcosing A according to (4.5) has the advantage that the
user needs to specify the matrix and the right hand side on
the finest grid only. Hence a multigrid code can be
programmed such that it is perceived by the user just like
any other subroutine for solving linear algebraic systems.
Furthermore, (4.5) provides automatically a sound
"homogenization" in cases where the coefficients or the right
hand side vary rapidly. With difference approximation the
implementation of the boundary conditions on the coarse grids
is quite often not trivial. On the other hand, depending
on the problem, computing A with (4.5) may be more expensive
than constructing a finite difference approximation. Also
2 has to be stored (perhaps to be overwritten at a later
stage by its incomplete factorization). With adaptive
discretisation (4.5) is not feasible, since one does not
know a priori what the finest grid will be. Results of
numerical experiments comparing coarse grid Galerkin and
finite difference approximation are given by Wesseling
(19823} .

For second order equations prolongation may be defined
by linear interpolation. If the "full multigrid" schedule
is used, second order interpolation is also needed at
certain stages in the schedule: see (Brandt, 1977). For

restriction one may safely take R = PT. For discussions of
various other possibilities, and comparative experiments,

see for example (Brandt, 1977, 1982; Stuben and Trottenbergqg,
1982; Wesseling, 1982A). However, when the coefficients in
the given differential equation are strongly discontinuous
one should use matrix-dependent prolongation instead of
linear interpolation, in order to take into account the fact,
that the solution is locally linear only in a piece-wise

fashion. One may still use R = PT. See (Alcouffe et al.,
1981; Kettler, 1982).

The two grid method described above becomes a
multigrid method if exact solution of the coarse grid is
replaced by approximate solution, using MG with coarser
grids. In the MGD-family of MG codes we do this with one
two-grid iteration employing an additional coarser grid with
doubled mesh-size, and so on recursively, until the coarsest
grid (usually a 3 x 3 grid) is reached, where one iteration
is performed according to (1.2). The resulting MG method
is said to be of sawtooth type, because its schedule is
represented in a natural way by the schematic of Fig. 4.1,
which is a sawtooth curve.
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grid
fine 5

4
’ /
2 ® s /
1 o// 7 /

coarse

Fig. 4.1. Sawtooth multigrid schedule.
A dot xepresents a smeething step.

Various more general MG schedules have been descxribed,
see for example (Brandt, 1977, 1982), (Stuben and
Trottenberg, 1982). Some comparative experiments are
described by Wesseling (1982A). The sawtooth schedule is
the simplest possible MG schedule. One may wonder whether
such a simple schedule can handle a sufficiently large
variety of cases. Experience indicates that the answer is
affirmative, see for example the experiments carried out
by Wesseling and Sonneveld (1980), Kettler (1982),

Wesseling (1982A,B), Hemker et al., (1983), McCarthy (1983),
Sonneveld et al. (1985), and the application to transonic
potential flow by Nowak and Wesseling (1984). We think that
with an effective smoothing process and accurate coarse grid
approximation, a simple MG schedule suffices for linear
problems.

The MGD-family of MG codes consists at the moment of the
subroutines MGD1 and MGD5. These are meant for solving
finite difference discretisations of a general second order
partial differential operator (possibly not self-adjoint,
with a mixed derivative allowed) on a two dimensional
rectangular uniform grid. The user provides only the matrix
and the right hand side on the finest grid. Because the
user is not allowed to influence these subroutines by
setting parameters etc, they are called autonomous.

MGD1l and MGD5 work like a "black box". MGDl uses ILU
smoothing, MGD5 employs IBLU. As a result, MGDS5 is more
robust. These programs are portable. In the near future,
MGDl will be available in the NAG library. Versions MGD1V
and MGD5V have been designed for auto-vectorization on CRAY
and CYBER-205, without sacrificing much on scalar machines.
More details, and CPU~time measurements on CYBER-170,
CYBER-205 and CRAY-1l, and some design considerations related
to these MG subroutines may be found in (Wesseling, 1982B,
Hemker et al., 1983, 1984, 1985, Sonneveld et al., 1985).
The MGD software may be obtained by sending a magnetic tape
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to the second author of the present paper.

MG software (the MGOO package) is also made available
by the group at GMD, Bonn, see (Foerster and Witsch, 1982;
Stiben et al., 1984). MGOO is for self-adjoint second
order elliptic partial differential equations on a
two dimensional rectangular domain. Unlike the MGD codes,
the user is allowed some freedom in choosing the MG algorithm.
There is a choice in MG schedules, smoothing processes and
restriction operators. For the Poisson equation an
especially fast version is available. A mixed derivative
is not allowed.

Dendy (1982) describes a "black box multigrid" method
that can handle self-adjoint equations with strongly
discontinuous coefficients; the software mentioned before
can handle this only when the discontinuities occur on grid
lines that belong to at least a few coarse grids. The user
has a choice of multigrid schedule and smoothing processes.

It is to be expected that results of comparative
numerical experiments with the software mentioned above will
become available in the near future.

5. DISCUSSION AND FINAL REMARKS

It will be clear from the foregoing that CG has a
sound theoretical basis only in the SPD case. For MG
the O(N) complexity is theoretically well-founded only if
one regards the coefficients in the differential equation
as fixed. However, in practice one often has a need for
numerical methods the properties of which remain invariant
as a coefficient tends to a limit. Examples are the
convection-diffusion equation at high Péclet number:

., — ¢ ,, =1£f (5.1)
(i ,id

u
3¢
with 1/e the Péclet number, or the Navier-Stokes equations
at high Reynolds number, or the anisotropic diffusion
equation:

- 84’,11 - ¢,22 = f (5.2)
Equation (5.2) also models the effect of having a
computational grid with cells of very high aspect ratio.
Testing in practice seems to be the only way to determine
how a method works in cases like this. In fact, also in
easier cases where € = O(l) practical tests are needed to
find out what the efficiency of a method is; there may be
large differences in computer time between two methods that
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both have complexity O(N).

Therefore there is a need for test problems of
sufficient generality such that one may have a reasonable
degree of confidence in those methods that have done well
on these test problems. One important test equation is
{(5.1), with u, in "all" possible directions, for example
uy = cosa, u, = gina, and testing with a = 0%150) 3450.
Having too few o values in one's test set can be quite
misleading; see the results in (Hemker et al., 1983;
Sonneveld et al., 1985). Another important test equation is
(5.2), with the axes rotated over an angle a, resulting in

2 2 2 2
(ec + s )¢,11 - 2(e - l)scq"12 - (es” + ¢ )¢'22 = £
(5.3)

with ¢ = cosa, s = sina., This introduces the additional
complication of a mixed derivative. A mixed derivative
occurs in practice when a non-orthogonal coordinate mapping
is used.

The fact that the coefficients in (5.1), (5.3) are
constant rather than variable does not make these problems
easier, but more difficult. It may easily happen that the
BIM that is accelerated with CG or MG is a bad preconditiocner
or smoother for certain combinations of € and a. This has
more serious consequences when the unfavourable €,0 values
occur throughout the domain than when these values occur
only locally.

Suitable test problems with strongly discontinuous
coefficients are the problems of Stone and Kershaw: see
(Kettler, 1982) for a description and further references.

Whether a particular MG method will work for a particular
problem may be predicted by Fourier smoothing analysis.
See Kettler (1982) for an extensive catalogue of Fourier
smoothing analysis results.

Sonneveld et al. (1985) report on numerical
experiments, solving (5.1) and (5.3) with six methods:
(1): MGDl, (2): MGD5, (3) , (4): MGDl with horizontal or
alternating zebra line Gauss-Seidel smoothing, respectively,
instead of ILU, (5): CGS with ILU preconditioning, (6): CGS
with IBLU preconditioning. A zebra rather than a successive
ordering was used because of considerations regarding
possible use of vector computers. Equation (5.1) is
discretised with upwind differences so that property (3.19)
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holds. It is found that (2) and (6) work efficiently in all
cases. The performance of the other methods deteriorates in
some cases. As far as MG is concerned, the observed behaviour
corresponds with smoothing analysis results, in so far as
these are available. There are special cases in which

methods (2) or (6) are surpassed in efficiency by one or

more of the other methods, as is to be expected. For

example, if € is large in eq. (5.2) a very effective and
simple preconditioner/smoother is horizontal line Gauss-Seidel
(zebra or successive). If one wants to handle as large a
class of problems as possible with a single autonomous

(black box) code without user-provided adaptions, IBLU

should be used for smoothing or preconditioning.

The experiments just mentioned were performed on a
65 x 65 grid. Computing times with CG or MG were roughly
the same. We have found that as the grid becomes larger,
CG starts to lag behind, in accordance with theoretical
computational complexity results. But it should be
remembered that CG is easier to program than MC,
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